

NATIONAL ASSEMBLY LIBRARY TRUST FUND

RESEARCH DEPARTMENT

PUBLIC HEALTH AND SOCIAL SERVICES THEMATIC UNIT

TITLE:

A.I-Driven Enhancements in Pharmacovigilance: Opportunities, Challenges, and Future Directions

EDITION: NALTF/PHSS/016

VOLUME: 16

BY

ASHANKOYE GODSWILL NNAMDI

4TH DECEMBER, 2025

info@naltf.gov.ng

ABSTRACT

Pharmacovigilance plays a critical role in ensuring drug safety by monitoring, detecting, and assessing Adverse Drug Reactions (ADRs). However, traditional pharmacovigilance systems often face challenges, including underreporting, delayed signal detection, and data overload. With the rapid advancement of Artificial Intelligence (AI), there is a growing interest in its potential to transform pharmacovigilance processes. This study explores the role of AI in enhancing pharmacovigilance, focusing on its current applications, key opportunities, challenges, and future directions. A comprehensive review of recent literature and case studies reveals that AI technologies, particularly machine learning, natural language processing, and deep learning, can significantly improve signal detection, automate data processing, and enable real-time surveillance of drug safety. Despite these promising developments, several challenges remain, including data quality issues, algorithm transparency, ethical concerns, and regulatory uncertainty. The study concludes that while AI offers transformative potential for pharmacovigilance, its implementation must be guided by robust validation frameworks, interdisciplinary collaboration, and updated regulatory policies to ensure the safe and effective integration of AI into existing drug safety systems. Recommendations for future research and strategic pathways for the responsible adoption of AI in pharmacovigilance are also discussed.

1.0 INTRODUCTION

Keeping medicines safe for patients is one of the most critical responsibilities in healthcare. This is where pharmacovigilance comes in: it helps monitor and manage adverse drug reactions (ADRs), ensuring that the benefits of medications outweigh the risks. However, despite its importance, traditional pharmacovigilance systems face significant challenges. Reporting is often incomplete or delayed, and the sheer volume of data from medical records to social media can be overwhelming. These gaps can make it harder to identify safety issues promptly and take action when needed most.

In recent years, Artificial Intelligence (AI) has shown real promise in transforming the way we approach drug safety. Tools such as machine learning, natural language processing (NLP), and deep learning are being utilised to rapidly sift through large amounts of data, recognise patterns that humans might overlook, and detect potential risks more quickly than ever before. AI enables transitioning from a reactive system waiting for adverse events to be reported to a more proactive, predictive approach.

Still, AI isn't a silver bullet. There are real concerns about the reliability of the data, the transparency and fairness of the algorithms, the protection of patient privacy, and how these new tools align with existing regulations. For AI to truly enhance pharmacovigilance, collaboration among healthcare providers, data scientists, policymakers, and regulators is necessary.

This paper examines the current application of AI in pharmacovigilance, the opportunities it presents, the challenges we must address, and what the future may hold. By taking a closer look at both the promise and the pitfalls, this study aims to contribute to a brighter, safer future for drug monitoring and patient care.

2.0 Statement of the Problem

In Nigeria, keeping patients safe from harmful drug reactions remains a serious challenge. Although thousands of Nigerians experience adverse drug reactions (ADRs) every year, very few of these cases are ever reported. For a country of over 200 million people, only about 4,600 ADR reports were recorded in 2024, far below what is expected for effective drug safety monitoring. Many healthcare workers see ADRs in their daily practice, yet most do not report them, often because they are unaware of the reporting tools or because the process feels too tedious and time-consuming.

The systems that should support pharmacovigilance are also weak. Many hospitals still use paper files, data is scattered across different facilities, and reporting centres struggle with delays and incomplete information. Even though NAFDAC has established a decentralised pharmacovigilance structure, many health institutions lack the training, infrastructure, or motivation to make it work effectively. All of these factors make it difficult to detect harmful drug reactions early enough to protect patients.

Artificial Intelligence (AI) could help solve many of these problems by analysing large amounts of health data quickly, spotting early warning signs, and reducing the workload on healthcare workers. But Nigeria is not yet fully ready for such a shift. Digital systems are still developing, many health workers have limited exposure to AI tools, and there are concerns about data privacy and the regulation of AI. Without clear guidelines and stronger infrastructure, it will be challenging to use AI safely and effectively in drug safety.

This creates a significant gap: Nigeria urgently needs better ways to detect and respond to ADRs, yet the tools that could enable this, such as AI, are not fully understood, adopted, or supported. Understanding how AI can be integrated into Nigeria's pharmacovigilance system, and what must be improved to make this possible, is therefore crucial for protecting patients and strengthening the country's drug safety efforts.

3.0 JUSTIFICATION OF THE STUDY

Ensuring that medicines are safe for everyone is one of the most critical responsibilities in any healthcare system. Unfortunately, in Nigeria, many harmful drug reactions go unnoticed or unreported, leaving patients at risk. Even though thousands of Nigerians experience adverse drug reactions (ADRs) every year, only a tiny fraction of these cases are reported. This means that dangerous side effects may continue unnoticed because the correct information does not reach the people who need it in time.

At the same time, the world is changing. Artificial Intelligence (AI) is already helping countries detect drug problems more quickly and accurately. With AI, computers can sift through vast amounts of health data, spot unusual patterns, and raise early warnings before a drug causes widespread harm. While these technologies are advancing globally, Nigeria is still taking early steps toward adopting them.

This study is critical because it sits at the intersection of **a big national problem** and **a promising modern solution**.

3.1. Protecting Patients by Strengthening Drug Safety

Nigeria's reporting rate for ADRs is far below international expectations. Without accurate data, it becomes challenging to identify which drugs are harmful and prevent avoidable deaths or complications. Studying how AI can improve this process is essential because earlier detection means quicker action and ultimately, safer patients.

3.2. Helping Nigeria Understand and Prepare for AI in Healthcare

AI is powerful, but it can also be misunderstood. Many healthcare workers in Nigeria have never used AI tools, and there are concerns about data privacy, fairness, and regulation. There is currently no clear national guidance on how AI should be used in pharmacovigilance. This study helps fill that gap by explaining the opportunities AI brings and the challenges that must be addressed to use it safely and responsibly.

3.3. Supporting Nigeria's Ongoing Efforts to Improve Pharmacovigilance

NAFDAC has already created a decentralised pharmacovigilance system, but many hospitals still struggle with awareness, training, and reporting tools. By showing how AI can support rather than replace the existing system, this study offers practical ideas that align with Nigeria's current health priorities.

4.0 OBJECTIVES OF THE STUDY

- To understand how Artificial Intelligence (AI) is currently being used in pharmacovigilance.
- To explore the benefits that AI can bring to pharmacovigilance.
- To look at the challenges involved in using AI for drug safety.
- To examine how prepared healthcare systems and regulatory bodies are
- Policy Recommendations on Pharmacovigilance

5.0 Literature Review

A systematic review of peer-reviewed journals, grey literature, policy documents, and official reports from agencies such as the National Agency for Food and Drug Administration and Control (NAFDAC), WHO, and Uppsala Monitoring Centre was conducted. Databases searched included PubMed, Scopus, Google Scholar, and local repositories. Keywords used were: “pharmacovigilance in Nigeria,” “drug safety,” “adverse drug reactions,” “medication errors,” and “NAFDAC pharmacovigilance.”

6.0 What is Pharmacovigilance?

Medicines and vaccines have transformed the prevention and treatment of diseases. In addition to their benefits, medicinal products may also have side effects, some of which may be undesirable and/or unexpected. Pharmacovigilance is the science and activities related to the detection, assessment, understanding, and prevention of adverse effects or any other problems associated with medicines or vaccines.

All medicines and vaccines undergo rigorous testing for safety and efficacy through clinical trials before they are authorised for use. However, the clinical trial process involves studying these products in a relatively small number of selected individuals for a short period. Specific side

effects may only emerge once these products have been used by a heterogeneous population, including individuals with other concurrent diseases, and over an extended period of time.

7.0. Current Applications of Artificial Intelligence in Pharmacovigilance

Artificial Intelligence (AI) is becoming an increasingly essential tool in pharmacovigilance, offering new ways to enhance the speed, accuracy, and efficiency of drug safety monitoring. Traditional pharmacovigilance systems often struggle to keep pace with the increasing volume and complexity of health data, resulting in delays in detecting adverse drug reactions (ADRs) and responding to emerging safety concerns. AI, with its ability to analyse large datasets and identify subtle patterns, is helping to bridge these gaps. This section outlines the key areas where AI is currently being applied in pharmacovigilance.

7.1. Adverse Drug Reaction Detection and Signal Identification

One of the most critical roles of AI in pharmacovigilance is the early detection of ADRs. Machine learning algorithms can analyse vast amounts of data from electronic health records, spontaneous reporting systems (such as VigiBase and FAERS), and clinical trial data to identify potential safety signals. These algorithms can detect correlations and trends that may not be immediately obvious to human reviewers, enabling quicker responses to emerging risks.

7.2. Natural Language Processing for Text Mining

Much of the data collected in pharmacovigilance is unstructured and written in free-text format, such as clinical notes, patient complaints, or social media posts. Natural Language Processing (NLP), a branch of AI, allows systems to process and extract relevant information from these sources. By interpreting this unstructured text, NLP tools can identify potential ADRs that might otherwise go unnoticed.

7.3. Automation of Case Processing

Pharmacovigilance departments often handle thousands of individual case safety reports (ICSRs), which require data entry, classification, and review. AI technologies are now being used to automate many of these routine tasks. This not only reduces manual workload but also helps improve consistency and efficiency in report processing.

7.4. Real-Time Drug Safety Monitoring

Traditional pharmacovigilance relies on data accumulation and manual review, which can delay the detection of adverse drug reactions. In contrast, AI systems can conduct continuous, real-time surveillance. These tools analyse incoming data from multiple sources such as hospital records, post-marketing surveillance programs, and even wearable devices to detect safety concerns as they arise.

7.5. Predictive Modelling of Drug Risks

Beyond detection, AI can also be used to predict potential safety issues before they become evident in the population. Using historical safety data, patient demographics, and drug pharmacological properties, predictive models can estimate the likelihood of specific ADRs in specific populations.

7.6. Support for Regulatory Decision-Making

Regulatory agencies such as the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA) are beginning to incorporate AI into their workflows. AI can help regulators process large datasets more efficiently, assist in post-marketing surveillance, and enhance their ability to detect safety signals across diverse populations.

Metric	Value / Observation	Implication
ADR reports in 2024	~ 4,600 reported in Nigeria.	Very low compared to the WHO benchmark (~ 46,000 for a population >200 million). Indicates serious under-reporting.
Reporting rate by resident doctors	In a survey of 350 resident doctors, 92.4% had observed ADRs, but only about 25.5% of those cases were reported, and only 7.3% were reported to NAFDAC.	Knowledge doesn't translate to action; systems/behaviour barriers exist.
Awareness of PV tools/forms	71.2% unaware of the "yellow forms" for ADR reporting in the same resident doctor survey.	Gaps in basic awareness among health professionals.
Decentralisation status	Nigeria has implemented a decentralised structure (zonal PV centres) under NAFDAC to enhance grassroots engagement.	Infrastructure exists in policy/design, but implementation is variable.

Table: showing Adverse Drug Reaction Detection and Signal Identification

Source: Handling Adverse Drug Reactions (ADRs)- NAFDAC

8.0. Benefits of Artificial Intelligence in Pharmacovigilance

The integration of Artificial Intelligence (AI) into pharmacovigilance offers several significant advantages, enhancing the effectiveness, efficiency, and scope of drug safety monitoring. As the volume and complexity of health data continue to grow, AI provides advanced tools that enable pharmacovigilance systems to transition from reactive reporting to proactive prevention. Below are the key benefits that AI brings to the field.

8.1. Faster Detection of Safety Signals

One of the most valuable contributions of AI is its ability to detect potential safety issues much faster than traditional methods. Machine learning algorithms can quickly process and analyse large datasets from various sources such as electronic health records, spontaneous reporting systems, and even social media to identify patterns or anomalies that may indicate an emerging safety signal.

Why it matters: Early detection of adverse drug reactions (ADRs) can lead to quicker regulatory responses, label updates, or even withdrawal of harmful products from the market, ultimately protecting patients.

8.2. Improved Accuracy and Consistency

AI systems, once properly trained, can reduce human error and variability in pharmacovigilance tasks. Unlike manual review processes that can be influenced by individual judgment or fatigue, AI operates with consistent logic, ensuring a standardised approach to data analysis and case assessment.

Why it matters: More consistent assessments lead to better decision-making, especially in high-stakes scenarios involving serious or life-threatening ADRs.

8.3. Enhanced Processing of Unstructured Data

Much of the data used in pharmacovigilance is unstructured, including free-text narratives from reports, clinical notes, or social media posts. Through Natural Language Processing (NLP), AI can interpret and extract useful information from this text, making it easier to analyse.

Why it matters: This expands the scope of data that can be analysed and allows pharmacovigilance systems to gain insights from real-world sources that were previously underutilised.

8.4. Real-Time Monitoring and Surveillance

AI enables continuous, real-time monitoring of drug safety data. Instead of relying on periodic reports, AI systems can scan incoming data streams around the clock, providing early warnings of potential ADRs or unusual trends.

Why it matters: Real-time monitoring helps prevent harm by enabling faster intervention and reducing the time between problem identification and action taken to address it.

8.5. Automation of Routine Tasks

AI can handle repetitive tasks, such as processing individual case safety reports (ICSRs), data entry, and classifying cases by severity or type of reaction. This automation reduces workload, allowing human experts to focus on more complex, judgment-based decisions.

Why it matters: Automating routine tasks improves efficiency and reduces turnaround time in pharmacovigilance workflows.

8.6. Predictive Capabilities

AI doesn't just help analyse what has happened; it can also predict what might happen. Predictive models can estimate the likelihood of specific ADRs based on historical data, patient characteristics, and drug properties.

Why it matters: Predictive insights allow for better risk management and more personalised approaches to drug safety.

8.7. Better Use of Real-World Data

AI facilitates the integration and analysis of real-world data (RWD) from diverse sources, including health apps, wearable devices, claims databases, and patient-reported outcomes.

Why it matters: Leveraging RWD provides a more comprehensive and dynamic picture of a drug's safety profile, particularly in underrepresented populations that are often excluded from clinical trials.

8.8. Support for Regulatory Decision-Making

AI tools can help regulatory bodies efficiently review vast amounts of data and identify safety signals across different populations and regions. It also supports post-marketing surveillance activities and regulatory compliance.

Why it matters: Regulatory agencies benefit from faster, evidence-based insights, enabling them to make more timely decisions about drug approvals, warnings, and market withdrawals.

9.0. Challenges Involved in Using AI for Drug Safety

While Artificial Intelligence (AI) brings exciting opportunities to pharmacovigilance, it's not without its challenges. The idea of using AI to make drug safety smarter and faster sounds promising, and it is, but implementing it isn't always straightforward. From data issues to ethical concerns, several hurdles must be addressed to ensure AI is used safely, effectively, and responsibly. This section explores key challenges in applying AI to drug safety.

9.1. Data Quality and Availability

AI is only as good as the data it learns from. In pharmacovigilance, this data often comes from various sources, including electronic health records, spontaneous reports, clinical trials, social media, and more. But this data is not always clean, complete, or reliable. It may contain errors, be biased, or missing key details.

Why it matters: Poor-quality data can lead to inaccurate predictions or missed safety signals, putting patients at risk rather than protecting them.

9.2. Lack of Standardisation Across Systems

Pharmacovigilance data are collected in various formats across different countries, organisations, and platforms. There's no universal way to record or share this information, which makes it difficult for AI systems to process and compare data effectively.

Why it matters: Without consistent formats, AI tools may struggle to analyse information accurately or be applicable across different regions or systems.

9.3. Algorithm Transparency and Explainability

Many AI models and intensive learning systems function like "black boxes"—they can make decisions, but it's often unclear how they arrived at those decisions. In a field like drug safety, where lives are at stake, understanding how a conclusion was reached is critical.

Why it matters: If regulators, healthcare professionals, or patients can't understand how an AI system flagged a drug risk, they may be reluctant to trust or act on its recommendations.

9.4. Ethical and Privacy Concerns

AI in pharmacovigilance often involves handling sensitive patient information. Ensuring that data is used ethically and that patients' privacy is protected is a primary concern—especially when utilising real-world data from sources such as health apps, wearable devices, or social media.

Why it matters: Without strong safeguards, the use of AI could lead to the misuse of personal data or a loss of public trust in drug safety systems.

9.5. Regulatory Uncertainty

Regulatory frameworks are still catching up with the advancements in AI technology. There are no clear global standards for validating, approving, or monitoring AI in pharmacovigilance. This can create uncertainty for both pharmaceutical companies and regulators.

Why it matters: Without clear guidance, it's hard to know how much trust to place in AI-generated findings or how to ensure they meet legal and safety standards.

10.0. Readiness of Healthcare Systems and Regulatory Bodies in Adopting AI for Pharmacovigilance

As Artificial Intelligence (AI) becomes increasingly integrated into pharmacovigilance, the question is no longer whether AI can support drug safety but whether healthcare systems and regulatory bodies are adequately prepared to adopt and manage these technologies. Effective implementation of AI in this field requires more than just access to advanced tools; it demands a supportive infrastructure, trained personnel, ethical safeguards, and updated regulatory frameworks. This section examines the current state of readiness across both healthcare and regulatory landscapes.

10.1. Variations in Digital Infrastructure and Data Maturity

Healthcare systems worldwide vary significantly in their level of digital maturity. While some high-income countries have adopted comprehensive electronic health record (EHR) systems, centralised data repositories, and interoperable databases, others, particularly in low- and middle-income regions, still rely on paper-based or fragmented reporting systems.

This digital divide has direct implications for AI integration, which depends on access to high-quality, structured, and timely data.

Implication: Without reliable digital infrastructure, healthcare systems may be unable to fully leverage AI's capabilities for real-time surveillance, automated signal detection, or predictive risk assessment in pharmacovigilance.

10.2. Workforce Readiness and AI Literacy

Another major factor influencing AI adoption is the level of awareness, training, and comfort among healthcare professionals and pharmacovigilance staff. While AI tools are increasingly available, a lack of formal training and a widespread misunderstanding of how these systems work, their benefits, and their limitations persist.

Implication: Without proper education and ongoing support, professionals may either misuse AI tools or refuse to adopt them, limiting their potential impact on drug safety processes.

10.3. Data Fragmentation and Interoperability Challenges

AI systems require access to diverse and integrated datasets to deliver accurate insights. However, in many countries, patient data is siloed across multiple healthcare providers, hospitals, insurance databases, and regulatory agencies. These fragmented systems often lack the necessary interoperability for AI algorithms to analyse data effectively.

Implication: Incomplete or poorly connected datasets can compromise the accuracy of AI-driven analyses, leading to missed safety signals or biased outcomes.

10.4. Evolving but Incomplete Regulatory Frameworks

Some regulatory bodies, such as the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA), have taken early steps to explore the role of AI in pharmacovigilance. These include pilot programs, draft guidance documents, and public consultations. However, most existing regulatory frameworks are still designed for traditional, rule-based systems and do not yet account for the complexities and dynamic nature of AI algorithms.

Implication: The absence of clear, globally harmonised regulatory standards for AI in pharmacovigilance poses implementation challenges, particularly in cross-border drug safety monitoring.

10.5. Challenges in Validation and Accountability

Traditional methods of validating software tools are often not well-suited to evolving machine learning systems. Furthermore, accountability in AI-driven decision-making remains a grey area. Suppose an AI tool fails to detect a safety signal or produces a false alert. In that case, it is often unclear whether the responsibility lies with the developer, the user, or the regulator.

Implication: Without clear guidelines for validation and responsibility, both healthcare organisations and regulatory bodies may be hesitant to rely on AI for critical drug safety tasks.

11.0. Policy Recommendations on Pharmacovigilance

To strengthen pharmacovigilance (PV) in Nigeria and ensure the safe use of medicines and health products, the following policy recommendations are proposed:

1. Strengthen the Legal and Regulatory Framework

- Amend existing drug laws to make adverse drug reaction (ADR) reporting mandatory for all healthcare providers and pharmaceutical companies.
- Establish **clear guidelines and penalties** for non-compliance with pharmacovigilance reporting standards.

2. Institutionalise Pharmacovigilance Across the Health System

- Mandate **the** integration of PV units in all tertiary and secondary health facilities.
- Require routine ADR reporting **as** part of healthcare providers' job descriptions and key performance indicators.

3. Increase Funding and Resource Allocation

- Allocate dedicated funds for pharmacovigilance within the federal and state health budgets.
- Provide funding to NAFDAC and academic institutions for PV research, capacity building, and reporting infrastructure.

- Explore public-private partnerships to support PV activities, particularly for digital reporting platforms.

4. Improve Reporting Infrastructure and Technology

- Develop and deploy user-friendly electronic reporting systems (e.g., mobile apps, online portals) that are accessible across all levels of healthcare.
- Strengthen the National PV Centre at NAFDAC with upgraded infrastructure, data analytics tools, and staff training.

5. Capacity Building and Training

- Provide continuous professional development (CPD) and training for healthcare workers on PV concepts, ADR recognition, and reporting procedures.
- Train community health workers and traditional medicine practitioners to detect and report suspected ADRs.

6. Public Awareness and Community Engagement

- Launch national awareness campaigns to educate patients and the public **on the** importance of reporting drug side effects.
- Encourage patient-centred pharmacovigilance through direct patient reporting mechanisms.

7. Enhance Collaboration and Data Sharing

- Promote inter-agency collaboration between NAFDAC, the Federal Ministry of Health, academic institutions, and pharmaceutical companies.
- Establish data-sharing agreements with regional and international bodies such **as the** WHO's Uppsala Monitoring Centre.

8. Monitor and Evaluate PV Performance

- Develop standard PV indicators for monitoring the effectiveness and coverage of pharmacovigilance activities.
- Require annual PV performance reports from all tertiary hospitals and relevant stakeholders.

12.0. Conclusion:

Artificial Intelligence (AI) is rapidly reshaping the landscape of pharmacovigilance, offering powerful tools to detect, assess, and prevent adverse drug reactions. By leveraging technologies such as machine learning, natural language processing, and predictive analytics, AI can transform pharmacovigilance from a reactive, manual process into a proactive, data-driven system. These advancements enable faster signal detection, real-time monitoring, and more efficient use of large, diverse datasets.

However, integrating AI into pharmacovigilance presents several challenges. Issues such as data quality, algorithm transparency, ethical concerns, and gaps in regulatory frameworks must be addressed to ensure the safe and effective implementation of these systems. There is also a pressing need for standardisation, workforce training, and collaborative efforts across healthcare, technology, and regulatory sectors.

Looking ahead, the responsible adoption of AI in pharmacovigilance will require clear policies, robust validation frameworks, and a commitment to ethical standards. By addressing current limitations and investing in scalable, inclusive solutions, AI can significantly enhance drug safety monitoring, ultimately improving patient outcomes worldwide.

13.0. References

- America's Maternal Mortality Crisis: A Call for Change | US Newsper. <https://usnewsper.com/2024/09/americanas-maternal-mortality-crisis-a-call-for-change/>
- Best practices for safe and responsible AI | Sessions | ASU+GSV Summit. <https://www.asugsvsummit.com/sessions/best-practices-for-safe-and-responsible-ai>
- Edible Oil – baseglobalenergy. <https://baseandedibleenergy.com/edible-oil/>
- Kompa, B., Hakim, J. B., Palepu, A., Saxena, N., Shah, P., & Sendak, M. (2022). Artificial intelligence based on machine learning in pharmacovigilance: A scoping review. *Drug Safety*, 45(5), 477–491. <https://doi.org/10.1007/s40264-022-01176-1>
- Kumar, R. K. S., & Velusamy, S. (2025). Harnessing artificial intelligence for enhanced pharmacovigilance: A comprehensive review. *Indian Journal of Pharmacy Practice*, 18(2), 171–179. <https://ijopp.org/article/8172>
- Pranali, W., Arti, S., Mandira, M., Vrushali, S., Priyanka, B., Kajal, P., & Ganesh, S. (2022). Artificial intelligence in pharmacovigilance: An overview. *Journal of Pharmaceutical Negative Results*, 13(1), 234–241. <https://doi.org/10.47750/pnr.2022.13.S01.135>
- Real-world data for pharmacovigilance purposes: Scoping review. *Journal of Medical Internet Research*, 26(3), Article e37652. <https://doi.org/10.2196/37652>
- Roy, J. R., Das, P., & Singh, A. (2023). Artificial intelligence-based machine learning in pharmacovigilance. *Journal of Pharmacovigilance & Drug Safety*, 1(2), 45–52. <https://www.journalofsopi.com/index.php/sopi/article/view/109>
- Senthil Kumar, R. K., & Velusamy, S. (2025). Artificial intelligence in pharmacovigilance: Challenges and opportunities. *Indian Journal of Pharmacy Practice*, 18(2), 171–179. <https://doi.org/10.5530/ijopp.18.2.35>
- Wani, P., Shelke, A., Marwadi, M., Somase, V., Borade, P., Pansare, K., & Sonawane, G. (2022). Role of artificial intelligence in pharmacovigilance: A concise review. *Journal of Pharmaceutical Negative Results*, 13(2), 5660–5666. <https://www.pnrjournal.com/index.php/home/article/view/5660>

- Ward, I. R., Wang, L., Lu, J., Bennamoun, M., Dwivedi, G., & Sanfilippo, F. M. (2021). Explainable artificial intelligence for pharmacovigilance: What features are important when predicting adverse outcomes? *arXiv Preprint*. <https://arxiv.org/abs/2112.13210>